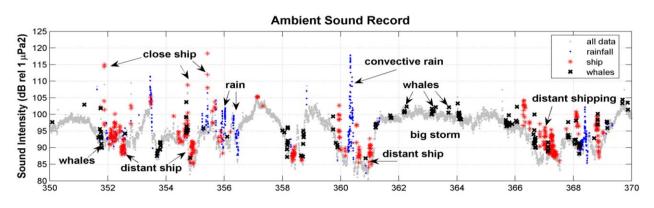

Underwater Passive Aquatic Listener (U-PAL)

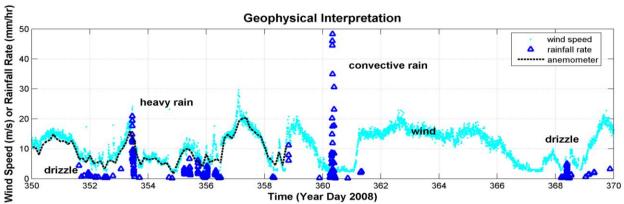
The U-PAL sensor is a novel underwater instrument that provides *real-time* processing of underwater sound for continuous acquisition, classification and quantification of geophysical, biological and anthropogenic sounds. Due to its adaptive and low power sampling, U-PAL can be used for long-term observations of both near-shore and deepocean environments to support a variety of offshore applications.

Markets:

- Meteorological: Quantifying wind speed and 1. precipitation.
- 2. **Biological:** Detecting, tracking and protecting marine mammals and fisheries.
- Geological: Detecting earthquakes and underwater **3.** landslides, and quantifying ice melting rates.
- Environmental Analysis: Quantifying ambient sound 4. levels and deriving sound budgets from long-term observations of processes at sea.
- **Offshore Operations**: Detecting ships, quantifying 5. sounds from wind farms and oil platforms.

Technical Specifications:


Functional	 Monitors acoustic frequency ranges between 2Hz and 80kHz Offers large acoustical operational coverage (> 4km²)
Operation and Maintenance	 Current operating periods up to 1 year with no interruptions Less susceptible to harsh weather events and vandalism No maintenance required during operating periods
Modular Design	 Can be deployed as a stand alone system Can be integrated into existing surface buoy and submerged mooring platforms Can be integrated into other instruments Deployable up to 4,000m water depth
Data Collection	 Adaptive sampling strategy Real-time classification and quantification of sound Optimized data storage (>64GB)



Underwater Passive Aquatic Listener (U-PAL)

Case Study:

The upper panel of the figure below shows time series of ambient total sound records (gray dots) taken from a deployment in the northern Aegean Sea, indicating a slowly varying wavegenerated background sound punctuated by shorter duration acoustic events: rain storms (blue dots), ship passages (red stars), and whale vocalizations (black x). The lower-panel shows the quantitative interpretation of the sound record in terms of rainfall rate and wind speed. [Figure from *Nystuen et al.*, *J. of Atmos. & Ocean. Technol.*, *Vol. 32, No. 2, 334-349 2015*]

<u>Note</u>: After day 358 the surface anemometer on this mooring failed, but the acoustical wind speed measurement continued.

U-PAL systems on ship deck prior to deployment at sea [photo from J. Nystuen]

